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The maximum-likelihood method is applied to direct methods to derive a more

general probability density function of the triple-phase sums which is capable of

predicting negative values. This study also proves that maximization of the

origin-free modulus sum function S yields, within the limitations imposed by the

assumed approximations, the maximum-likelihood estimates of the phases. It

thus represents the formal theoretical justification of the S function that was

initially derived from Patterson-function arguments [Rius (1993). Acta Cryst.

A49, 406–409].

1. Introduction

Although most recent efforts in ab initio phasing of medium-

sized crystal structures concentrate on dual-space direct

methods (Weeks et al., 1994), direct methods working exclu-

sively in reciprocal space have also been improved consider-

ably in the last few years (Rius, 2004). Reciprocal-space

procedures are simpler to implement and faster to calculate

but, as a counterpart, require previous knowledge of the small

E magnitudes.

Historically, the evolution of direct methods can be divided

into two periods. An initial one making use of the probability

associated with the phase sum of each structure invariant and

for which Cochran’s probability density function (p.d.f.) was

crucial (Cochran, 1955), and a second one dominated by the

computing facilities allowing the simultaneous handling of the

information contained in multiple structure invariants. Deci-

sive for this second period was not only the development of

suitable phase refinement functions but also the derivation of

the four-phase sum p.d.f. that allowed negative quartets to be

predicted from the known weak E’s (Schenk, 1973; Hauptman,

1975; Giacovazzo, 1976). In the present contribution, a

modified p.d.f. of the triple-phase sum is introduced that can

also predict negative triplets from weak E’s, in analogy to the

quartets case. This p.d.f. follows from the application of the

maximum-likelihood method (Fisher, 1922) to the phases

using the observed strong and weak E values as observations.

It is found that the likelihood function corresponds to the

‘origin-free’ modulus sum function (Rius, 1993), thus

providing the latter with a strong theoretical basis and justi-

fying its observed robustness and efficiency for reciprocal-

space phase refinements. This also confirms the results

published in Rius (1997), where the close relationship between

negative triplets and quartets was already deduced from

physical considerations. To facilitate the maximum-likelihood

derivation in x6, all relevant quantities involved in its defini-

tion are first introduced in x2, 3, 4 and 5.

2. The structure factor G of the squared point-atom
structure

For simplicity, a crystal structure belonging to space group P1

and containing N equal atoms in the unit cell will be assumed

throughout. The normalized structure factor of reflection H is

then given after Hauptman & Karle (1953) by

EH ¼ EH exp i’H ¼ ð1=N1=2
Þ
P

j

expði2�HrjÞ; ð1Þ

which corresponds to an electron-density distribution of point

atoms with 1=N1=2 as scattering power. The modulus EH can be

obtained from the measured intensity by correcting it for the

atomic form factor and thermal vibration decays. By squaring

the scattering power 1=N1=2, the structure factor of the

squared point-atom structure results:

GH ¼ GH exp i H ¼ ð1=NÞ
P

j

expði2�HrjÞ ð2Þ

so that the experimental GH and EH are related by the simple

expression

GH ¼ EH=N1=2: ð3Þ

In what follows, only those reflections with s values smaller

than smax ¼ ð2 sin �maxÞ=� will be considered.

3. The structure factor G as a function of the phases

Consider the sum
P

H0EH0EH�H0 in which H0 represents the

experimentally accessible reflections. As indicated in Fig. 1,

these reflections correspond to vectors going from the recip-

rocal-lattice node �H (point O0) to any node inside the



limiting sphere and with lengths sH0 < smax. Next, this sum will

be decomposed in terms of the atomic position vectors rj:

N
P
H0

EH0EH�H0 ¼
P

k

expði2�HrkÞ
P
H0

P
j

exp½�i2�H0ðrk � rjÞ�

ð4Þ

and, if rkj = rk � rj, then

N1=2
P
H0

EH0EH�H0 ¼
P

k

expði2�HrkÞ
P

j

P
H0
ð1=N1=2Þ

� expð�i2�H0rkjÞ: ð5Þ

The inner sum
P

H0 ð1=N1=2Þ expð�i2�H0rkjÞ yields the electron

density of the origin peak of strength (1=N1=2) at position rkj.

For j = k, rkk = 0 and the value of the inner sum reduces to

nH0=N1=2 with nH0 being the number of H0 reflections. For j 6¼ k,

this value will also depend on the sampling volume of H0. If a

given �H is close to the centre of the limiting sphere (i.e. for

short O–O0 distances in Fig. 1), the sampling volume of H0 can

be approximated to a sphere of effective radius seff’ smax. The

summation
P

H0 expð�i2�H0rÞ can be expressed as the integral

over the whole of the reciprocal space V�,P
H0

expð�i2�H0rÞ ¼ K
R

V�
tðsÞ expði2�rsÞ ds; ð6Þ

where function t(s) is 1 for s < seff and 0 otherwise (Lipson &

Cochran, 1966). This integral is the Fourier transform of t(s)

and is a function of r only. It is given by

T3ðrÞ ¼ 4�s3
eff½sinð2�seffrÞ � 2�seffr cosð2�seffrÞ�=ð2�seffrÞ

3:

The value of the scaling constant K can be estimated by

considering that the value of the sum
P

H0 expð�i2�H0rÞ at r =

0 is nH0, i.e. K = nH0/T3(0). Consequently, the value of the sum

for an arbitrary rkj isP
H0

expð�i2�H0rkjÞ ffi nH0 ½T3ðrkjÞ=T3ð0Þ�: ð7Þ

For data reaching atomic resolution, T3 falls off very fast.

Therefore it will only be significant for rkk = 0 and, since the

quotient T3ðrkkÞ=T3ð0Þ is unity, the approximation

P
H0
ð1=N1=2Þ expð�i2�H0rkjÞ ’ nH0=N1=2 ð8Þ

holds. In contrast, for �H close to the border of the limiting

sphere, the sampling volume of the corresponding H0 cannot

be approximated by a complete sphere, i.e. either the term H0

or �H0 is sometimes missing in
P

H0 expð�i2�H0rkjÞ, so that

the resulting imaginary contribution will not vanish. Fortu-

nately, for data at atomic resolution, the broadening of the

origin peak caused by the Fourier truncation is small in

comparison to typical next-neighbour distances (1.4–1.5 Å), so

that approximation (8) is still valid. This situation is illustrated

in detail in Fig. 2 for the one-dimensional case. Introduction of

(8) in (5) under consideration of (2) leads to

GH ffi hEH0EH�H0 iH0 ð9Þ

(Hughes, 1953). The modulus GH can be obtained by multi-

plying GH with the phase term exp[i �H] of its complex

conjugate, i.e. by making

GH ¼ <fexp½i �H �GHg ð10Þ

with

 H ¼ phase of
P
H0

EH0EH�H0

� �
: ð11Þ

Finally, from (9) and (10), the desired modulus GH in terms of

the phases follows:

GHð�Þ ’ hEH0EH�H0 cos �3H;H0 iH0 ; ð12Þ

where � denotes here the collectivity of phases ’ of the true

structure and where the triple-phase sum is

�3H;H0 ¼  �H þ ’H0 þ ’H�H0 : ð13Þ

research papers

332 Jordi Rius � Maximum likelihood and direct methods. XI Acta Cryst. (2006). A62, 331–335

Figure 1
Schematic representation of the experimentally accessible H0 reflections
in expression (4). The sphere of radius smax = (2 sin�max)/� centred at the
origin O is the so-called limiting sphere. The wanted H0 reflections can be
found by placing an additional sphere of same radius smax at O0, i.e. the
reciprocal-lattice node �H, and by looking for all nodes H0 inside the
intersection area.

Figure 2
Evolution of hexpð�i2�H0rÞiH0 ðHÞ = CH(r) exp i�H(r) for a one-dimen-
sional crystal structure of period a = 30 Å at atomic resolution (smax =
1 Å�1): (i) for a reflection H near the centre of the limiting ‘sphere’ with
sH = 0.1 Å�1 and H0 ranging from�30 to 27; (ii) for a reflection H close to
the border of the limiting ‘sphere’ with sH = 0.9 Å�1 and H0 ranging from
�30 to 3. The sharpest CH function corresponds to sH = 0.1 Å�1. In both
cases, however, CH is small enough at approximately 1.5 Å, i.e. a typical
next-neighbour distance in organic compounds. This justifies approxima-
tion (8).



4. Observational variance of the structure factor G of
the squared point-atom structure

Let the GH(�) in (12) be decomposed into the nH0 individual

terms

gH0 ¼ EH0EH�H0 cos �3H;H0 ð14Þ

and let the gH0 be assumed to be independent observations

from the same population following a p.d.f. centred at G (the

‘measured’ value) with variance

�2
gH ¼ n�1

H0
P
H0
ðgH0 �GHavÞ

2 ð15Þ

and with estimated mean of the population, GHav = hgH0iH0. For

its computation, it is more convenient to write �2
gH in the form

�2
gH ¼ ð1=nH0 Þ

P
H0

g2
H0 �

P
H0

gH0

� �2�
nH0

" #
ð16Þ

so that by introducing expression (14) for gH0 in (16),

�2
gH ¼ ð1=nH0 Þ

P
H0

E2
H0E

2
H�H0 cos2 �3H;H0

� ð1=n2
H0 Þ

P
H0

E2
H0E

2
H�H0 cos2 �3H;H0 þ

P
H0

P
H00 for H0 6¼H00

. . .

" #

ð17Þ

the approximate value is found:

�2
gH ffi hE

2
H0E

2
H�H0 cos2 �3H;H0 iH0 : ð18Þ

The desired variance of the estimated mean of the population,

GHav, is then given by

�2
H ¼ hðGHav �GÞ

2
iH0 ¼ ð1=n2

H0 Þ
P
H0
�2

gH ¼ �
2
gH=nH0 : ð19Þ

The numerical value of �2
gH can be roughly estimated by

supposing in (18) that E2
H0 , E2

H�H0 and cos2 �3H;H0 are uncor-

related. According to the E statistics, the theoretical values of

hE2
H0 iH0 and hE2

H�H0 iH0 are both one and, on the hypothesis of a

uniform distribution of �3 on the trigonometric circle, the

value of hcos2 �3H;H0 iH0 is 1=2, so that

�2
gH ffi hE

2
H0 iH0 hE

2
H�H0 iH0 hcos2 �3H;H0 iH0 ¼ 1=2: ð20Þ

5. The linear approximation to GH(U)2

The treatment of the phases ’ is much simpler in GH(�) than

in the corresponding squared function. For simplicity, it will

therefore be convenient to replace in the likelihood expres-

sion the squared function GH(�)2 by the linear approximation

GHð�Þ
2
ffi kGHð�Þ: ð21Þ

This approximation requires GH(�) to be positive, which is

ensured through the condition  = f(�) imposed in (11) (Rius

et al., 2002). The value of k is found by averaging the indivi-

dual slopes obtained from the different experimental GH, i.e.

k ¼ hdG2=dG jG¼GH
iH ¼ 2hGiH: ð22Þ

6. The likelihood expressed as a function of the phases

Let us assume that the GH are independent observations and

that the errors or discrepancies GH � GH(�) are random and

distributed according to a Gaussian density function with

variance �2
H. According to the maximum-likelihood method

(Fisher, 1922), the maximum-likelihood estimate of the par-

ameters, the phases, corresponds to the maximum of the

likelihood function L:

Lð�Þ ¼
Q
H

½�Hð2�Þ
1=2��1 expf�½GH �GHð�Þ�

2=2�2
Hg; ð23Þ

in which the joint density of the data is the product of their

individual p.d.f.’s. This expression can be simplified by

squaring the binomial, by considering (21) and (22) and

collecting together those factors that are independent of the

phases in a single constant c, i.e.

Lð�Þ ¼ c
Q
H

expf½2GHGHð�Þ � 2hGiGHð�Þ�=2�2
Hg: ð24Þ

In view of (3), (24) can be modified to

Lð�Þ ffi c
Q
H

exp½ð1=N1=2ÞðEH � hEiÞGHð�Þ=�
2
H� ð25Þ

and, by taking into account (12), (19) and (20), it further

reduces to

Lð�Þ ffi c
Q

H;H0
exp½ð2=N1=2ÞðEH � hEiÞEH0EH�H0 cos �3H;H0 �:

ð26Þ

Next, by grouping all phase-independent factors present in the

exponential argument into a single parameter

�H;H0 ¼ ð2=N1=2
ÞðEH � hEiÞEH0EH�H0 ð27Þ

the definitive form for L(�) is reached:

Lð�Þ ffi c
Q

H;H0
expð�H;H0 cos �3H;H0 Þ: ð28Þ

Each exponential term in (28) involves a triplet of reflections

�H, H0, H � H0 and represents its individual contribution to

the likelihood. It is obvious that only the exponential terms

with large concentration parameters |�| can contribute signif-

icantly to the likelihood and that those with small |�| could be

disregarded. Inspection of (27) readily indicates that all � with

at least two weak E values must have small |�| values. In

contrast, if EH0 and EH�H0 are both large, then the contribution

of the corresponding exponential terms can be significant.

Consequently, only this second case will be considered. To

simplify the analysis, the strong (weak) H reflections are

denoted by the symbols h (k), and the two other reflections of

the triplet are referred to as h0 and h � h0 (h00 and k � h00). The

two types of exponential terms that are most important for the

likelihood maximization are the following.

Type 1: one weak and two strong E values

The corresponding concentration parameter and triple-

phase sum are

�k;h00 ¼ ð2=N1=2
ÞðEk � hEiÞEh00Ek�h00 ð29Þ

�3k;h00 ¼  �k þ ’h00 þ ’k�h00 : ð30Þ
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The absolute value of �k,h0 0 is large due to the presence of the

factor (Ek � hEi). Since �k,h0 0 is here negative, the contribution

to the likelihood will be largest for cos�3k,h0 0 = �1, that is for

�3k,h0 0 = �. Notice that the triple-phase sum contains the phase

 �k = f(�) and not ��k.

Type 2: three strong E values

When all three E values are large, the equalities  �h = ’�h,

 h0 = ’h0,  h�h0 = ’h�h0 can be assumed to be valid, and

therefore there are three exponential terms with identical �3

values. These three terms can be collected together and the

cosine term factorized out to give

�h;h0 cos �3h;h0 þ �h;h�h0 cos �3h;h�h0 þ �h0;h�h0 cos �3h;h�h0

¼ 3�H;H0 cos �3H;H0 ð31Þ

with

�h;h0 ¼ ð2=N1=2Þf1� ðhEi=3Þ½E�1
h þ E�1

h0 þ E�1
h�h0 �gEhEh0Eh�h0

ð32Þ

�3h;h0 ¼ ’�h þ ’h0 þ ’h�h0 : ð33Þ

By applying the above conclusions to (28), the likelihood in

terms of the set � of phases ’ of the strong reflections may be

approximated with

Lð�Þ ffi c
Q
h;h0

expð�h;h0 cos �3h;h0 Þ
Q
k;h00

expð�k;h00 cos �3k;h00 Þ:

ð34Þ

Since the exponential quantities must be everywhere greater

than or equal to zero, L must have a real logarithm. The

logarithm is a monotonically increasing function of its argu-

ment, so the maximum value of L corresponds also to the

maximum value of ln(L) (Prince, 1982). Taking natural log-

arithms on both sides of (34),

ln½Lð�Þ� ¼ lnðcÞ þ Sð�Þ ð35Þ

with

Sð�Þ ¼
P

h

P
h0
�h;h0 cos �3h;h0 þ

P
k

P
h00
�k;h00 cos �3k;h00 ; ð36Þ

then, since ln(c) is constant, the maximum of S(�) will

correspond to the maximum of L(�) and will give the

maximum-likelihood estimate of the phases. S(�) is the

origin-free modulus sum function which was first derived from

purely physical considerations (Rius, 1993, 2002). Since L,

ln(L) and S have their maxima for the same �, the elementary

theory of maxima and minima tells us that there will be one

likelihood equality of type

@ lnðLÞ=@’h ¼ @S=@’h ¼ 0 ð37Þ

for each phase ’h to be determined (Debaerdemaeker et al.,

1985). It can be shown that (37) can be solved with the

iterative application of the S-tangent formula [expression (12)

in Rius (1993)]. The S phase-refinement function has been

applied successfully to the solution of a number of crystal

structures of variable complexity under a variety of situations,

e.g. single-crystal diffraction, powder diffraction and surface

diffraction.

7. The probability density function of the triple-phase
sums

According to (28), L can be approximated by the product of

the exponential terms with triplets formed by either one large

or one weak H reflection and two additional large ones (h0 and

H � h0). If the sign of � is incorporated in the argument of the

respective cosine, (28) takes the form

Lð�Þ ffi
Q

H;h0
c exp½j�H;h0 j cosð�H;h0 ��3H;h0 Þ�; ð38Þ

where � is 0 for positive and � for negative �. Suppose now the

normal circular probability density function of an angular

variable x (von Mises, 1918)

PðxÞ ¼ ½2�I0ð�Þ�
�1 exp½j�j cosð�� xÞ� ð39Þ

in which

(i) � is the most probable value of x,

(ii) |�| is the concentration parameter (i.e. a measure of the

tightness or sharpness of the function around �),

(iii) the first term is a normalizing constant to ensure that

the probability in the x interval [��, +�] is unity, and with

I0(�) being the modified Bessel function of zero order.

Making x = �3 in (39) and comparing the resulting

expression with (38), one can readily see that L(�) is

proportional to the product of the normal circular p.d.f.’s of

the �3,

Lð�Þ ffi c0
Q

H;h0
P½�3H;h0 �; ð40Þ

wherein the phase-independent constant
Q

H,h0 2�I0(�H,h0) is

contained in c0. Notice that, if the �3 were assumed to be

independent variables, the maximum of L would be reached

for the �3 being equal to the respective � for all triplets H,h0.

The shape of the p.d.f. of �3 for different � values is depicted

in Fig. 3.
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Figure 3
Probability density function of �3 =  (�H) + ’(h0) + ’(H � h0) for
different �(H, h0) values. The sign of � determines the position of the
maximum of the p.d.f., i.e. �3 = 0 for positive and � for negative �. The
dispersion of the p.d.f. is smaller for higher |�|: (i) � = 1.651 [E(h) = 3.0,
E(h0) = 2.5, E(h � h0) = 2.5]; (ii) � = 0.875 [E(h) = 3.0, E(h0) = 2.1,
E(h � h0) = 1.8]; (iii) � =�0.454 [E(k) = 0.15, E(h0) = 2.1, E(k � h0) = 1.8].



8. Conclusions

The principal conclusions are: (i) that the phase-refinement

procedures based on the maximization of the origin-free

modulus sum function yield the maximum-likelihood esti-

mates of the phases; (ii) that the proposed probability density

function of the triple-phase sums allows the prediction not

only of positive but also of negative triplets. This is achieved

through the introduction of the phase  H of the GH which is

the principal difference with Cochran’s p.d.f. (Cochran, 1955)

and is also necessary to preserve the parallelism between

triplets and quartets. Effectively, if the likelihood is defined

with the G2
H as observations, the quartets which result from

working out GHð�Þ
2 ¼ hEH0EH�H0 iH0 hEH00E�H�H00 iH00 only

involve the phases ’ and the  are then not necessary (Rius,

1997). This is surely the reason why the p.d.f. predicting the

negative quartets was found earlier (Schenk, 1973; Hauptman,

1975; Giacovazzo, 1976).
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